top of page

PUBLICATIONS: Journals

Journal Articles

  1. M. Pelayo Garcia, D. Gibson, D.A. Hughes and C. García Núñez “A Refined Quasi-Static Method for Precise Determination of Piezoelectric Coefficient of Nanostructured Standard and Inclined Thin Films” Advanced Physics Research 2300091 (2023) 1-12 DOI: 10.1002/apxr.202300091

  2. G. McGann, C. García Núñez, L. Fleming, David Hutson, Ewan Waddell, Des Gibson, “Band Gap Engineering of Pb1-xCdxSe Thin Films Providing mid-IR Photoluminescent Based Light Emitting Diodes for Use in Non-Dispersive Infrared Gas Sensors” IEEE Sensors Letters 7(9) (2023) 2001704 DOI: 10.1109/LSENS.2023.3307081

  3. A. Ejaz, M. McKinlay, S. Ahmadzadeh, M. Pelayo Garcia, L. Fleming, P. Mazur, M. Mazur, D. Gibson, C. García Núñez, “Investigation and band gap analysis of pulsed DC magnetron sputtered diamond-like carbon to enhance contact-electrification and durability of triboelectric nanogenerators” Advanced Materials Technologies (2023) 2300450 DOI:10.1002/admt.202300450

  4. E. Keel, A. Ejaz, M. Mckinlay, M. Pelayo Garcia, M. Caffio, D. Gibson, C. García Núñez, “Three-dimensional graphene foam based triboelectric nanogenerators for energy systems and autonomous sensors” Nano Energy 112 (2023) 108475 DOI: 10.1016/j.nanoen.2023.108475

  5. C. García Núñez, et al., “Amorphous Dielectric Optical Coatings Deposited by Plasma Ion Assisted Electron Beam Evaporation for Gravitational Wave Detectors” Applied Optics 62(7) (2023) B209-B221 DOI: 10.1364/AO.477186

  6. S. Shigeng, S. Cai, D. Han, C. García Núñez, et al., “Tantalum Oxide and Silica Mixture Coatings Deposited Using Microwave Plasma Assisted Co-sputtering for Optical Mirror Coatings in Gravitational Wave Detectors” Applied Optics 62 (7) (2023) B73-B78 DOI: 10.1364/AO.477211

  7. P. Escobedo, C.E. Ramos-Lorente, A. Ejaz, M.M. Erenas, A. Martinez-Olmos, M.A. Carvajal, C. García Núñez, et al., “QRsens: Dual-purpose Quick Response code with built-in colorimetric sensors” Sensors and Actuators B: Chemical 376(B) (2023)133001 DOI: 10.1016/j.snb.2022.133001

  8. C. Douglas, C. García Núñez, et al., “Ultra-Thin Graphene Foam Based Flexible Piezoresistive Pressure Sensors for Robotics” Key Engineering Materials 922 (2022) 79-86 DOI:10.4028/p-oy94hj

  9. C. García Núñez et al., "Single GaAs Nanowire Based Photodetector Fabricated by Dielectrophoresis" Nanotechnology 31(22) (2020) 225604 DOI: 10.1088/1361-6528/ab76ee

  10. L. Manjakkal, W. T. Navaraj, C. García Núñez et al., "Graphite Polyurethane Resin Composites for High-Energy Density Supercapacitors," Advanced Science (2019) DOI: 10.1002/advs.201802251

  11. C. García Núñez et al., "Energy autonomous electronic skin," NPJ Flexible Electronics 3(1) (2019) DOI: 10.1038/s41528-018-0045-x

  12. C. García Núñez et al., "Heterogeneous Integration of Contact-printed Semiconductor Nanowires for High Performance Devices on Large Areas," Microsystems & Nanoengineering 4(22) (2018) DOI: 10.1038/s41378-018-0021-6

  13. C. García Núñez, et al., "ZnO Nanowires based Flexible UV Photodetector System for Wearable Dosimetry," IEEE Sensors Journal 18(19) (2018) 7881-7888 (Full Paper).

  14. L. Manjakkal, C. García Núñez, et al., "Flexible Self-Charging Supercapacitor Based on Graphene-Ag-3D Graphene Foam Electrodes," Nano Energy 51 (2018) 604-612 (Full Paper).

  15. C. García Núñez et al., "A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy," Nano Letters 18(6) (2018) 3608–3615 (Full Paper).

  16. C. García Núñez et al., "Large-area self-assembly of silica micro/nanospheres by temperature-assisted dip-coating," ACS Applied Materials and Interfaces 10(3) (2018) 3058 (Full Paper).

  17. C. García Núñez et al., “Energy Autonomous Flexible and Transparent Tactile Skin,” Advanced Functional Materials 27(18) (2017) 1606287 (Full Paper). Almetric Score of 492.

  18. William T. Navaraj, C. García Núñez et al., “Nanowire FET based Neural Element for Robotic Tactile Sensory System,” Frontiers and Neuroscience 11 (2017) 501 (Full Paper).

  19. N.P. Barradas, C. García Núñez et al., “Analytical simulation of RBS spectra of nanowire samples,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 371 (2016) 116 (Full Paper).

  20. C. García Núñez et al., “GaAs nanowires grown by Ga-assisted chemical beam epitaxy: Substrate preparation and growth kinetics,” Journal of Crystal Growth 430 (2015) 108 (Full Paper).

  21. C. García Núñez et al., “Effects of Hydroxylation and Silanization on the Surface Properties of ZnO Nanowires,” ACS Applied Materials and Interfaces 7 (2015) 5331 (Full Paper).

  22. A. García Marín, C. García Núñez et al., “Continuous-flow System and Monitoring Tools for the Dielectrophoretic Integration of Nanowires in Light Sensor Arrays,” Nanotechnology 26 (2015) 115502 (Full Paper).

  23. C. García Núñez et al., “Surface Optical Phonons in GaAs Nanowires Grown by Ga-assisted Chemical Beam Epitaxy,” Journal of Applied Physics 115 (2014) 034307 (Full Paper).

  24. C. García Núñez et al., “Enhanced Fabrication Process of Zinc Oxide Nanowires for Optoelectronics,” Thin Solid Films 555 (2014) 42 (Full Paper).

  25. C. García Núñez et al., “Conducting Properties of Nearly-Depleted ZnO Nanowire UV Sensors Fabricated by Dielectrophoresis,” Nanotechnology 24 (2013) 415702 (Full Paper).

  26. C. García Núñez et al., “Sub-micron ZnO:N Particles Fabricated by Low Voltage Electrical Discharge Lithography on Zn3N2 Sputtered Films,” Applied Surface Science 285 (2013) 783 (Full Paper).

  27. C. García Núñez et al., “Pure Zincblende GaAs Nanowires Grown by Ga-assisted Chemical Beam Epitaxy,” Journal of Crystal Growth 372 (2013) 205 (Full Paper).

  28. A. García Marín, C. García Núñez et al., “Fast Response ZnO:Al/CuO Nanowire/ZnO:Al Heterostructure Light sensors Fabricated by Dielectrophoresis,” Applied Physics Letters 102 (2013) 232105 (Full Paper).

  29. C. García Núñez et al., “Thin Film Transistors Based on Zinc Nitride as a Channel Layer for Optoelectronic Devices,” Applied Physics Letters 101 (2012) 253501 (Full Paper).

  30. C. García Núñez et al., “Influence of Air Exposure on the Compositional Nature of Zn3N2 Thin Films,” Thin Solid Films 522 (2012) 208 (Full Paper).

  31. C. García Núñez et al., “On the Zinc Nitride Properties and the Unintentional Incorporation of Oxygen,” Thin Solid Films 520 (2012) 1924 DOI:10.1016/j.tsf.2011.09.046

  32. C. García Núñez et al., “On the True Optical Constants of Zinc Nitride,” Applied Physics Letters 99 (2011) 232112 DOI:10.1063/1.3663859

 

LIGO publications

  1. R Abbott, et al., “Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run” Physical review letters 129 (6), 061104 (2022).

  2. R Abbott, et al., “All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs” Physical Review D 105 (12) (2022)  122001

  3. R Abbott, et al., “Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants” Physical Review D 105 (8) (2022) 082005

  4. R Abbott, et al., “Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run” Physical review D 105 (6) (2022) 063030

  5. R Abbott, et al., “Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a” arXiv preprint arXiv:2203.12038 (2022)

  6. R Abbott, et al., “Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo” Astronomy & Astrophysics 659 (2022) A84

  7. R Abbott, et al., “Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data” (2022) Physical Review D 105 (2), 022002

  8. R Abbott, et al., “Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run” (2021) arXiv preprint arXiv:2112.10990

  9. R Abbott, et al., “Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo’s Third Observing Run” (2021) The Astrophysical Journal 923 (1), 14

  10. R Abbott, et al., “Search of the Early O3 LIGO Data for Continuous Gravitational Waves from the Cassiopeia A and Vela Jr. Supernova Remnants” (2021) arXiv preprint arXiv:2111.15116

  11. R Abbott, et al., “Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910” (2021) The Astrophysical Journal 922 (1), 71

  12. R Abbott, et al., “All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run” (2021) Physical Review D 104 (10), 102001

  13. R Abbott, et al., “GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run” arXiv preprint arXiv:2111.03606

  14. R Abbott, et al., “Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo” (2021) The Astrophysical Journal 921 (1), 80

  15. R Abbott, et al., “All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs” (2021) arXiv preprint arXiv:2110.09834

  16. R Abbott, et al., “All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data” (2021) Physical Review D 104 (8), 082004

  17. R Abbott, et al., “Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run” (2021) arXiv preprint arXiv:2109.12197

  18. R Abbott, et al., “Gwtc-2.1: Deep extended catalog of compact binary coalescences observed by ligo and virgo during the first half of the third observing run” (2021) arXiv preprint arXiv:2108.01045

  19. R Abbott, et al., "Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO's and Advanced Virgo's first three observing runs" (2021) arXiv:2103.08520

  20. R Abbott, et al., "Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run" (2021) Physical Review D 104 (2), 022004

  21. R Abbott, et al., "Observation of gravitational waves from two neutron star–black hole coalescences" (2021) The Astrophysical Journal Letters 915 (1), L5

  22. R Abbott, et al.,"Constraints on cosmic strings using data from the third Advanced LIGO–Virgo observing run" (2021) Physical review letters 126 (24), 241102

  23. R Abbott, et al., "Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910" (2021). arXiv:2012.12926

  24. R Abbott, et al., "Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo" (2021) arXiv:2105.15120

  25. R Abbott, et al., “Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run” (2021) arXiv preprint arXiv:2105.13085

  26. R Abbott, et al., "All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems" Physical Review D 103 (2021) 064017. DOI: 10.1103/PhysRevD.103.064017

bottom of page